Definitions | x:A. B(x), x:AB(x), P & Q, x:A. B(x), {x:A| B(x)} , P Q, P Q, A, x(s), s = t, E, f(a), {T}, Bij(A;B;f), e c e', (e.P(e) a.f(a) e'.Q(e')) with R, t.1, let x,y = A in B(x;y), Dec(P), False, valtype(e), , EqDecider(T), EOrderAxioms(E; pred?; info), kind(e), type List, Msg(M), , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r s, , x:A B(x), Knd, kindcase(k; a.f(a); l,t.g(l;t) ), x. t(x), x,y. t(x;y), IdLnk, constant_function(f;A;B), <a, b>, loc(e), b, first(e), suptype(S; T), Type, left + right, S T, Top, x:A.B(x), Void, Unit, SWellFounded(R(x;y)), pred!(e;e'), , Id, EState(T), t T, ES, P Q, case b of inl(x) => s(x) | inr(y) => t(y), tt, ff, x.A(x), if b then t else f fi , True, b, P Q, A c B, Inj(A;B;f), Surj(A;B;f), T, (e < e'), SQType(T), s ~ t, , val(e) |